Untargeted Proteomics Data
Untargeted proteomics analysis was conducted on cerebrospinal fluid and plasma of both Parkinson's Disease patients and healthy participants in the PDBP and PPMI cohorts. Analysis was conducted using Data-Independent Acquisition mass spectrometry-based (“untargeted”) proteomics utilizing trap-collision based disassociation to measure fragment intensity (smaller portions of peptides) from processed peptide samples. The method requires this fragment intensity to be combined to give peptide intensity and then peptide intensity is combined to give protein intensity data that can then be used in downstream analysis.
Table 1. Total number of participants and samples run through mass spectrometry based untargeted proteomics, split by cohort (PDBP, PPMI) and tissue (Plasma, CSF).
Participants | Samples | ||
---|---|---|---|
PDBP | Plasma | 128 | 522 |
CSF | 139 | 524 | |
PPMI | Plasma | 179 | 949 |
CSF | 481 | 2283 |
Method
LC-MS Methods
Data Processing
References
- Röst, H. L.; Rosenberger, G.; Navarro, P.; Gillet, L.; Miladinović, S. M.; Schubert, O. T.; Wolski, W.; Collins, B. C.; Malmström, J.; Malmström, L.; Aebersold, R. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat. Biotechnol. 2014, 32, 219– 223, DOI: 10.1038/nbt.2841
- Reiter, L.; Rinner, O.; Picotti, P.; Hüttenhain, R.; Beck, M.; Brusniak, M. Y.; Hengartner, M. O.; Aebersold, R. mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat. Methods 2011, 8, 430– 435, DOI: 10.1038/nmeth.1584
- Röst, H. L.; Liu, Y.; D’Agostino, G.; Zanella, M.; Navarro, P.; Rosenberger, G.; Collins, B. C.; Gillet, L.; Testa, G.; Malmström, L.; Aebersold, R. TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics. Nat. Methods 2016, 13, 777– 783, DOI: 10.1038/nmeth.3954
- Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, Ranish J, Raught B, Schmitt R, Werner T, Kuster B, Aebersold R. Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol. 2007
- Sundararaman N,; Bhat A,; Venkatraman V,; Binek A,; Dwight Z,; Ariyasinghe NR,; Escopete S,; Joung SY,; Cheng S,; Parker SJ,; Fert-Bober J,; and Van Eyk JE. BIRCH: An Automated Workflow for Evaluation, Correction, and Visualization of Batch Effect in Bottom-Up Mass Spectrometry-Based Proteomics Data. Journal of Proteome Research, 2023 22 (2), 471-481, DOI: 10.1021/acs.jproteome.2c00671
- Wright, M. N.; Ziegler, A. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Softw. 2017, 77, 1– 17, DOI: 10.18637/jss.v077.i01
- Zhang S, Raedschelders K, Venkatraman V, Huang L, Holewinski R, Fu Q, Van Eyk JE. A Dual Workflow to Improve the Proteomic Coverage in Plasma Using Data-Independent Acquisition-MS. J Proteome Res. 2020 Jul 2;19(7):2828-2837.
- Teo G, Kim S, Tsou CC, Collins B, Gingras AC, Nesvizhskii AI, Choi H. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry. Journal of proteomics. 2015 Nov 3;129:108-20.
- Mc Ardle, A.; Binek, A.; Moradian, A.; Chazarin Orgel, B.; Rivas, A.; Washington, K. E.; Phebus, C.; Manalo, D.-M.; Go, J.; Venkatraman, V.; Coutelin Johnson, C. W.; Fu, Q.; Cheng, S.; Raedschelders, K.; Fert-Bober, J.; Pennington, S. R.; Murray, C. I.; Van Eyk, J. E., Standardized Workflow for Precise Mid- and High-Throughput Proteomics of Blood Biofluids. Clinical Chemistry 2022, 68 (3), 450-460.
- Fu, Q.; Johnson, C. W.; Wijayawardena, B. K.; Kowalski, M. P.; Kheradmand, M.; Van Eyk, J. E., A Plasma Sample Preparation for Mass Spectrometry using an Automated Workstation. JoVE (Journal of Visualized Experiments) 2020, (158), e59842.
- Holewinski, R. J.; Parker, S. J.; Matlock, A. D.; Venkatraman, V.; Van Eyk, J. E., Methods for SWATH™: data independent acquisition on TripleTOF mass spectrometers. Quantitative proteomics by mass spectrometry 2016, 265-279.